Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Adv Mater ; : e2401263, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678376

ABSTRACT

Lithium-sulfur (Li-S) batteries stand out as one of the promising candidates for next-generation electrochemical energy storage technologies. A key requirement to realize high-specific-energy Li-S batteries is to implement low amount of electrolyte, often characterized by the electrolyte/sulfur (E/S) ratio. Low E/S ratio aggravates the known challenges for Li-S batteries and introduces new ones originated from the high concentration of polysulfides in limited electrolyte reservoir. In this review, the connections between the fundamental properties of electrolytes and the electrochemical/chemical reactions in Li-S batteries under lean electrolyte condition are elucidated. The emphasis is on how the solvating properties of the electrolyte affect the fate of polysulfides. Built upon the mechanistic analysis, different strategies to design lean electrolytes to improve the overall process of Li-S reactions and Li anode protection are discussed.

2.
Eur J Med Chem ; 265: 116121, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38194777

ABSTRACT

TP53, also known as the "guardian of the genome," is an important tumor suppressor gene. It is encoded by the human genome and is associated with the development of diverse cancers. The p53 protein, encoded by TP53, functions in the cell to monitor DNA damage and prompts the cell to respond appropriately. When DNA is damaged, p53 halts the cell cycle, allowing cells to enter the repair state. If the repair is ineffective, p53 induces cell death via apoptosis. This prevents DNA damage transmission during cell division and reduces cancer risk. However, the p53 gene mutation compromises its function. This leads to the inability of cells to respond properly to DNA damage, which may result in cancer development. Mutations in p53 are widespread in diverse cancers, especially highly prevalent cancers, including breast, colon, and lung cancers. Despite the association between p53 mutations and cancer, researchers have discovered drugs and treatments that may reactivate mutated p53 function. Therefore, p53 remains an important area of research in cancer treatment and holds promise as a new direction for cancer therapy. In summary, TP53 is a vital tumor suppressor gene responsible for monitoring DNA damage and prompting cells to respond appropriately. This article summarizes drugs related to p53 and diverse strategies for discovering drugs that act on either wide or mutant p53. Herein, p53 is categorized into two types: wild and mutant type. Drugs are also classified according to diverse treatment strategies, enabling readers to differentiate between the two types of p53 and aiding in selecting the appropriate research direction. Additionally, this review offers a valuable reference for drug design.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Mutation , DNA Damage , Apoptosis
3.
ChemSusChem ; 17(6): e202301329, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-37953440

ABSTRACT

Superbase-derived ionic liquids (SILs) are promising sorbents to tackle the carbon challenge featured by tunable interaction strength with CO2 via structural engineering, particularly the oxygenate-derived counterparts (e. g., phenolate). However, for the widely deployed phenolate-derived SILs, unsolved stability issues severely limited their applications leading to unfavorable and diminished CO2 chemisorption performance caused by ylide formation-involved side reactions and the phenolate-quinone transformation via auto-oxidation. In this work, robust pyrazolonate-derived SILs possessing anti-oxidation nature were developed by introducing aza-fused rings in the oxygenate-derived anions, which delivered promising and tunable CO2 uptake capacity surpassing the phenolate-based SIL via a carbonate formation pathway (O-C bond formation), as illustrated by detailed spectroscopy studies. Further theoretical calculations and experimental comparisons demonstrated the more favorable reaction enthalpy and improved anti-oxidation properties of the pyrazolonate-derived SILs compared with phenolate anions. The achievements being made in this work provides a promising approach to achieve efficient carbon capture by combining the benefits of strong interaction strength of oxygenate species with CO2 and the stability improvement enabled by aza-fused rings introduction.

4.
Molecules ; 28(23)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38067616

ABSTRACT

An iridium-catalysed hydrogen transfer strategy, enabling straightforward access to tetrahydro pyridine derivatives from aryl-1,8-naphthyridines and indolines, was developed. This method proceeds with unprecedented synthetic effectiveness including high step-economic fashion together with the advantages of having no by-product and no need for external high-pressure H2 gas, offering an important basis for the transformation of 1,8-naphthyridines and indolines into functionalized products.

5.
Molecules ; 28(22)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-38005224

ABSTRACT

As one of the most common forms of waste, waste PET is a serious pollutant in natural and human living environments. There is an urgent need to recycle PET. For this study, the complete degradation of PET was realized at a low temperature. A lipophilic hydrophobic membrane was formed on the surface of a stainless steel mesh (SSM) using a simple dip coating method, and an oil-water separation material was successfully prepared. After loading with degradation products, the surface roughness of SSM increased from 19.09 µm to 62.33 µm. The surface changed from hydrophilic to hydrophobic, and the water contact angle increased to 123°. The oil-water separation flux of the modified SSM was 9825 L/(m2·h), and the separation efficiency was 98.99%. The modified SSM had good reuse performance. This hydrophobic modification method can also be used to modify other porous substrates, such as activated carbon, filter paper, foam, and other materials. The porous substrate modified by the degradation product of waste PET was used to prepare oil-water separation materials, not only solving the problem of white pollution but also reducing the dependence on non-renewable resources in the conventional methods used for the preparation of oil-water separation materials. This study provides new raw materials and methods for the industrial production of oil-water separation materials, which have important application prospects.

6.
Molecules ; 28(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38005379

ABSTRACT

The increase in carbon dioxide emissions has significantly impacted human society and the global environment. As carbon dioxide is the most abundant and cheap C1 resource, the conversion and utilization of carbon dioxide have received extensive attention from researchers. Among the many carbon dioxide conversion and utilization methods, the reverse water-gas conversion (RWGS) reaction is considered one of the most effective. This review discusses the research progress made in RWGS with various heterogeneous metal catalyst types, covering topics such as catalyst performance, thermodynamic analysis, kinetics and reaction mechanisms, and catalyst design and preparation, and suggests future research on RWGS heterogeneous catalysts.

7.
Exp Ther Med ; 26(5): 542, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37869639

ABSTRACT

Myocardial ischemia-reperfusion (I/R) injury is a common complication of acute myocardial infarction following percutaneous coronary intervention, but there are currently no effective pharmacological targets for adjuvant therapy due to a lack of knowledge of I/R injury mechanisms in cardiomyocytes. To evaluate the effects of hypoxia-reoxygenation on the plasma proteome of cardiomyocytes and prospective therapeutic targets, five sets of H9C2 cardiomyocytes from rats were cultured under various hypoxic circumstances. Using Cell Counting Kit-8 (CCK8) and lactose dehydrogenase (LDH) release assays, the cell viability and LDH release of H9C2 cells were analyzed. Proteome sequencing was then performed on cardiomyocytes to show the quantitative protein changes during the I/R injury process. After hypoxia/reoxygenation, bromodomain-containing protein 2 (BRD2) expression was evaluated. After administering the BRD2 inhibitor dBET1, the expression of nuclear factor erythroid 2-related factor 2/haem oxygenase-1 (Nrf2/HO-1) was identified. The results showed that in the group exposed to 4 h of hypoxia followed by 4 h of reoxygenation (H/R4), the cell survival rate was dramatically reduced, although the apoptotic rate and LDH were much higher than in the normal oxygen group. In addition, the expressions of 2,325 proteins differed considerably between these two groups, with 128 upregulated and 122 downregulated proteins being discovered in the H/R4 group. After 4 h of reoxygenation, the BRD2 expression was increased. Following the addition of dBET1 to suppress BRD2, the expression of Nrf2/HO-1 was reduced, but the rate of apoptosis increased. In conclusion, through the Nrf2/HO-1 signaling pathway, BRD2 protects cardiomyocytes from damage caused by hypoxia/reoxygenation. This may have implications for novel treatment targets to minimize I/R damage to the myocardium.

8.
J Biophotonics ; 16(9): e202300108, 2023 09.
Article in English | MEDLINE | ID: mdl-37260409

ABSTRACT

We proposed a novel method to separate static and dynamic speckles based on spatial frequency domain filtering. First, the raw speckle image sequence is processed frame by frame through 2D Fourier transform, low-pass and high-pass filtering in the spatial frequency domain, and inverse Fourier transform. Then, we can obtain low- and high-frequency image sequences in the spatial domain. Second, we averaged both sequences in the time domain. After the above processing, we obtain the mean intensities of the dynamic and static speckle components in the spatial domain. Finally, we calculated the time-averaged modulation depth to map the 2-D blood flow distribution. Both phantom and vivo experiments demonstrated that the proposed method could effectively suppress the background non-uniformity and has the advantage of high computational efficiency. It also can effectively improve image contrast, contrast-to-noise ratio, and imaging dynamic range.


Subject(s)
Algorithms , Laser Speckle Contrast Imaging , Diagnostic Imaging , Phantoms, Imaging , Hemodynamics
9.
Small ; 19(41): e2302708, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37317018

ABSTRACT

Direct air capture (DAC) of CO2 has emerged as the most promising "negative carbon emission" technologies. Despite being state-of-the-art, sorbents deploying alkali hydroxides/amine solutions or amine-modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal-organic framework (Ni-MOF) with superbase-derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low-pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed-bed breakthrough examination with 400 ppm CO2 gas flow reveal high-performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g-1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy-efficient/fast CO2 releasing behaviors. The theoretical calculation and small-angle X-ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2 , indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL-derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.

10.
Molecules ; 28(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36770582

ABSTRACT

A direct regioselective C-H cyanation of purines was developed through a sequential triflic anhydride activation, nucleophilic cyanation with TMSCN, followed by a process of base-mediated elimination of triflous acid (CF3SO2H). In most cases, the direct C-H cyanation occurred on the electron-rich imidazole motif of purines, affording 8-cyanated purine derivatives in moderate to excellent yields. Various functional groups, including allyl, alkynyl, ketone, ester, nitro et al. were tolerated and acted as a C8 directing group. The electron-donating 6-diethylamino, as C2-directing group substituent, can switch the regioselectivity of purine from 8- to 2-position, enabling the synthesis of 8- and 2-cyano 6-dialkylaminopurines from corresponding 6-chloropurine in different reaction order. Further functional manipulations of the cyano group allow the conversions of 8-cyanopurines to corresponding purine amides, imidates, imidothioates, imidamides, oxazolines, and isothiazoles.

11.
Int Immunopharmacol ; 114: 109552, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36527882

ABSTRACT

OBJECTIVE: To investigate the effect of inactivated coronavirus disease 2019 (COVID-19) vaccination on frozen-thawed embryo transfer (FET) outcomes. METHODS: This retrospective cohort study enrolled 1,210 patients undergoing FET cycles in a single university-affiliated hospital between July 1, 2021, and May 1, 2022. Of them, 387 women with two full doses of inactivated SARS-CoV-2 vaccines (CoronaVac or BBIBP-CorV) after oocyte retrieval were assigned to the vaccinated group, while 823 were unvaccinated as controls. Propensity score matching and multiple regression analysis were applied to control for baseline and cycle characteristics (19 covariates in total). RESULTS: There were 265 patients in each group after matching. The rates of clinical pregnancy (58.5% vs. 60.8%; P = 0.595) and live birth (44.4% vs. 48.8%; P = 0.693) were similar between vaccinated and unvaccinated patients, with adjusted odds ratios of 0.89 (95% confidence interval [CI] 0.61-1.29) and 1.31 (95% CI 0.37-4.56), respectively. Consistently, no significant differences were found in serum human chorionic gonadotropin levels as well as biochemical pregnancy, biochemical pregnancy loss, and embryo implantation rates. Based on the time interval from vaccination to FET, vaccinated patients were further subdivided into two categories of ≤2 months and >2 months, and the outcomes remained comparable. CONCLUSION: Our study showed that inactivated COVID-19 vaccination in women did not have measurable detrimental impact on implantation performance and live birth outcome during FET treatment cycles. This finding denies the impairment of endometrial receptivity and trophoblast function by vaccine-induced antibodies at the clinical level.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Pregnancy , Humans , Female , Pregnancy Outcome , COVID-19 Vaccines , Pregnancy Rate , Retrospective Studies , COVID-19/prevention & control , SARS-CoV-2 , Embryo Transfer , Cryopreservation , Pregnancy Complications, Infectious/prevention & control
12.
J Am Chem Soc ; 144(47): 21658-21663, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36377883

ABSTRACT

Superbase-derived task-specific ionic liquids (STSILs) represent one of the most attractive and extensively studied systems in carbon capture via chemisorption, in which the obtained CO2 uptake capacity has a strong relationship with the basicity of the anions. High energy input in desorption and side reactions caused by the strong basicity of the anions are still unsolved issues. The development of other customized STSILs leveraging an alternative driving force to achieve efficient CO2 chemisorption/desorption is highly desirable yet challenging. In this work, carbanion-derived STSILs were developed for efficient CO2 chemisorption via a carboxylic acid formation pathway. The STSIL with the deprotonated malononitrile molecule ([MN]) as the anion exhibited much higher CO2 uptake capacity than the one derived from 2-methylmalononitrile ([MMN]). Notably, this trend was opposite to their basicity ([MN] < [MMN]). Detailed characterization of the products, supported by density functional theory simulations of spectra and calculations of the reaction energetics, demonstrated that carboxylic acid was formed upon reacting with CO2 via proton transfer in [MN]-derived STSILs but not in the case of [MMN] due to lack of an α-H. The preference of the carboxylic acid product over carboxylate formation was driven by the extended conjugation among the central sp2 carbon, the as-formed carboxylic acid, and the two nitrile groups. The achievements made in this work provide an alternative design principle of STSILs by leveraging the extended conjugation in the CO2-integrated product.

13.
J Phys Chem B ; 126(36): 6979-6984, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36047943

ABSTRACT

Although anionic N and O sites have been widely used in chemisorption of CO2, carbanions are much less explored for CO2 capture. Here we employ ab initio calculations and quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) simulations to examine the interaction between CO2 and the malononitrile carbanion, [CH(CN)2]-. We have explored the potential energy surface of CO2 binding by scanning the C-C distance between CO2 and the central C site of the carbanion. We find that CO2 prefers to bind to the nitrile group physically rather than to form a C-C bond via the carboxylation reaction at the sp2 C site. Moreover, the two -CN groups can attract two CO2 molecules at equal strength. The presence of an alkali metal ion enhances both physical and chemical interactions of CO2 with the malononitrile carbanion. QM/MM MD simulations further confirm the preference of physical interaction in the condensed ionic liquid phase with a phosphonium cation. Our findings suggest that ionic liquids based on the malononitrile carbanion may have a high CO2 solubility for carbon capture.


Subject(s)
Carbon Dioxide , Ionic Liquids , Anions/chemistry , Carbon Dioxide/chemistry , Ionic Liquids/chemistry , Nitriles
14.
J Vis Exp ; (187)2022 09 12.
Article in English | MEDLINE | ID: mdl-36155615

ABSTRACT

Interspecific hybridization in Cucurbita crops (squash) is desirable for widening genetic variation and for the introgression of useful alleles. Immature embryos generated from these wide crosses must be regenerated using appropriate embryo rescue techniques. Although this technique is well established for many crops, a detailed description of the appropriate methodology for squash that would allow its routine application is lacking. Here, we describe an embryo rescue protocol useful for interspecific hybridization of C. pepo and C. moschata. To identify viable combinations for embryo rescue, 24 interspecific crosses were performed. Fruit set was obtained from twenty-two crosses, indicating a 92% success rate. However, most of the fruits obtained were parthenocarpic, with seeds devoid of embryos (empty seeds). Only one cross combination contained immature embryos that could be regenerated using basal plant growth media. A total of 10 embryos were rescued from the interspecific F1 fruit, and the success rate of embryo rescue was 80%. The embryo rescue protocol developed here will be useful for interspecific hybridization in squash breeding programs.


Subject(s)
Cucurbita , Crosses, Genetic , Cucurbita/genetics , Hybridization, Genetic , Plant Breeding , Seeds/genetics
15.
Front Plant Sci ; 13: 848631, 2022.
Article in English | MEDLINE | ID: mdl-35665151

ABSTRACT

Squash (Cucurbita moschata) is among the most important cucurbit crops grown worldwide. Plant pathogen, Papaya ringspot virus W (PRSV-W) causes significant yield loss in commercial squash production globally. The development of virus-resistant cultivars can complement integrated disease management and mitigate losses due to viral infections. However, the genetic loci and molecular markers linked to PRSV-W resistance that could facilitate marker-assisted selection (MAS) for accelerated cultivar development are unknown. In this study, quantitative trait loci (QTL), molecular markers, and candidate genes associated with PRSV-W resistance in squash were identified in an F2 population (n = 118) derived from a cross between Nigerian Local accession (resistant) and Butterbush cultivar (susceptible). Whole genome re-sequencing-based bulked segregant analysis (QTLseq method; n = 10 for each bulk) and non-parametric interval mapping were used to identify a major QTL associated with PRSV-W resistance on chromosome 9 (QtlPRSV-C09) (p < 0.05) of C. moschata. QtlPRSV-C09 extended from 785,532 to 5,093,314 bp and harbored 12,245 SNPs among which 94 were high-effect variants. To validate QtlPRSV-C09, 13 SNP markers were assayed as Kompetitive allele-specific PCR (KASP) markers in the F2 population and tested for the association with PRSV-W resistance. Among these, two KASP markers (Ch09_2080834 and Ch09_5023865-1) showed significant association with PRSV-W resistance (p < 0.05). The two SNPs were located within exons of putative disease-resistant genes encoding the clathrin assembly family and actin cytoskeleton-regulatory complex proteins, which are implicated in disease resistance across plant species. The findings of this study will facilitate MAS for PRSV-W resistance in squash and allow further understanding of the functional mechanisms underlying potyvirus resistance in Cucurbita species.

16.
Plants (Basel) ; 11(9)2022 May 03.
Article in English | MEDLINE | ID: mdl-35567238

ABSTRACT

Pumpkin (Cucurbita pepo) seeds are nutritious and valued as a source of vegetable oil, protein, healthy fatty acids, and minerals. Pumpkin seeds that are naturally devoid of the seedcoat (hull-less) are preferred by the industry as they eliminate the need for de-hulling prior to use. A single recessive gene, designated as n or h, controls the hull-less seed trait in pumpkin. Visual selection for the trait is easy, however, it is resource intensive when applied to large breeding populations. High throughput genotyping assays can aid in the identification of suitable individuals in segregating populations through marker-assisted selection. In the current study, the QTL-seq approach was used to identify genetic loci, SNP markers and candidate genes associated with the hull-less trait in a segregating F2 population (n = 143) derived from a cross between Kakai (hull-less) × Table Gold Acorn (hulled). The segregation of the hull-less trait in the F2 population fit a 3:1 ratio (p < 0.05). QTL-seq analysis detected a single QTL on chromosome 12 (Qtlhull-less-C12) which was significantly associated with the hull-less trait in C. pepo. Twenty-eight SNPs were genotyped in the population, two among which (Ch12_3412046 and Ch12_3417142) were significantly associated (p < 0.05) with the hull-less trait in cultivars and accessions of diverse genetic background. Several candidate genes fall within the Qtlhull-less-C12 interval, among them is the No Apical meristem (NAC) domain-containing protein and a Fiber Protein fb11 gene involved in lignin accumulation and cell wall deposition across plant species, respectively. The findings of this study will facilitate the marker-assisted selection for the hull-less seed trait in pumpkin and further our understanding of the functional mechanisms underlying the trait across cucurbit crops.

17.
ChemSusChem ; 15(2): e202102136, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34862754

ABSTRACT

Development of efficient carbon capture-and-release technologies with minimal energy input is a long-term challenge in mitigating CO2 emissions, especially via CO2 chemisorption driven by engineered chemical bond construction. Herein, taking advantage of the structural diversity of ionic liquids (ILs) in tuning their physical and chemical properties, precise reaction energy regulation of CO2 chemisorption was demonstrated deploying metal-ion-amino-based ionic liquids (MAILs) as absorbents. The coordination ability of different metal sites (Cu, Zn, Co, Ni, and Mg) to amines was harnessed to achieve fine-tuning on stability constants of the metal ion-amine complexes, acting as the corresponding cations in the construction of diverse ILs coupled with CO2 -philic anions. The as-afforded MAILs exhibited efficient and controllable CO2 release behavior with great reduction in energy input and minimal sacrifice on CO2 uptake capacity. This coordination-regulated approach offers new prospects for the development of ILs-based systems and beyond towards energy-efficient carbon capture technologies.


Subject(s)
Ionic Liquids , Amines , Anions , Carbon , Carbon Dioxide
18.
Plants (Basel) ; 10(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34685924

ABSTRACT

Phytophthora capsici Leonian causes significant yield losses in commercial squash (Cucurbita pepo) production worldwide. The deployment of resistant cultivars can complement integrated management practices for P. capsici, but resistant cultivars are currently unavailable for growers. Moderate resistance to Phytophthora crown rot in a selection of accession PI 181761 (C. pepo) (designated line #181761-36P) is controlled by three dominant genes (R4, R5 and R6). Introgression of these loci into elite germplasm through marker-assisted selection (MAS) can accelerate the release of new C. pepo cultivars resistant to crown rot, but these tools are currently unavailable. Here we describe the identification of a quantitative trait locus (QTL), molecular markers and candidate genes associated with crown rot resistance in #181761-36P. Five hundred and twenty-three SNP markers were genotyped in an F2 (n = 83) population derived from a cross between #181761-36P (R) and Table Queen (S) using targeted genotyping by sequencing. A linkage map (2068.96 cM) consisting of twenty-one linkage groups and an average density of 8.1 markers/cM was developed for the F2 population. The F2:3 families were phenotyped in the greenhouse with a virulent strain of P. capsica, using the spore-spray method. A single QTL (QtlPC-C13) was consistently detected on LG 13 (chromosome 13) across three experiments and explained 17.92-21.47% of phenotypic variation observed in the population. Nine candidate disease resistance gene homologs were found within the confidence interval of QtlPC-C13. Single nucleotide polymorphism (SNP) markers within these genes were converted into Kompetitive Allele Specific PCR (KASP) assays and tested for association with resistance in the F2 population. One SNP marker (C002686) was significantly associated with resistance to crown rot in the F2 population (p < 0.05). This marker is a potential target for MAS for crown rot resistance in C. pepo.

19.
Plants (Basel) ; 10(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34579467

ABSTRACT

Zucchini Yellow Mosaic Virus (ZYMV) is an aphid-transmitted potyvirus that causes severe yield losses in squash (Cucurbita moschata) production worldwide. Development of resistant cultivars using traditional breeding approaches relies on rigorous and resource-intensive phenotypic assays. QTL-seq, a whole genome re-sequencing based bulked segregant analysis, is a powerful tool for mapping quantitative trait loci (QTL) in crop plants. In the current study, the QTL-seq approach was used to identify genetic loci associated with ZYMV resistance in an F2 population (n = 174) derived from a cross between Nigerian Local (resistant) and Butterbush (susceptible). Whole genome re-sequencing of the parents and bulks of resistant and susceptible F2 progeny revealed a mapping rate between 94.04% and 98.76%, and a final effective mapping depth ranging from 81.77 to 101.73 across samples. QTL-seq analysis identified four QTLs significantly (p < 0.05) associated with ZYMV resistance on chromosome 2 (QtlZYMV-C02), 4 (QtlZYMV-C04), 8 (QtlZYMV-C08) and 20 (QtlZYMV-C20). Seven markers within the QTL intervals were tested for association with ZYMV resistance in the entire F2 population. For QtlZYMV-C08, one single nucleotide polymorphism (SNP) marker (KASP-6) was found to be significantly (p < 0.05) associated with ZYMV resistance, while two SNPs (KASP-1 and KASP-3) and an indel (Indel-2) marker were linked to resistance within QtlZYMV-C20. KASP-3 and KASP-6 are non-synonymous SNPs leading to amino acid substitutions in candidate disease resistant gene homologs on chromosomes 20 (CmoCh20G003040.1) and 8 (CmoCh08G007140.1), respectively. Identification of QTL and SNP markers associated with ZYMV resistance will facilitate marker-assisted selection for ZYMV resistance in squash.

20.
ChemSusChem ; 14(14): 2784, 2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34216105

ABSTRACT

Invited for this month's cover is the group of Sheng Dai at the Oak Ridge National Laboratory. The image shows the CO2 chemisorption behavior of coordination-derived phenolate sorbents. The Communication itself is available at 10.1002/cssc.202100666.

SELECTION OF CITATIONS
SEARCH DETAIL
...